همه پست‌ها

32

این نقاشی افسون کننده کار یک هنرمند نیست بلکه کار یک تابع مختلط است. این تابع برای هر نقطه از صفحه مختلط، یک سری اعداد طبیعی تولید میکند.با رنگ کردن هر نقطه بر اساس مقدار عدد آن، چنین تصویری بوجود می آید.
تابع مولد این مجموعه بسیار ساده است. برای عدد مختط z تابع f(z)=z*z+c را تعریف میکنیم که در آن c عددی ثابت است. آنگاه با شروع از نقطه اولیه z0  ، مجموعه ای از اعداد مختلف را اینگونه تولید میکنیم:

 

z1=f(z0)

 

z2=f(z1)

 

zk=f(zk-1)
...

zN=f(zN-1)

بعد از تولید هر نقطه، قدر مطلق آن را با ثابت R مقایسه میکنیم. اگر قدر مطلق zk از ثابت R بزرگتر و k کمتر از N  باشد، به اصلاح میگویند نقطه گریخته است و در این صورت عدد k را به آن نقطه انتصاب میدهیم. اگر نقطه نگریزد عدد N را به آن نسبت میدهیم.
نقاط تاریک تصویر گریخته ها هستند. این مجموعه اعداد به N و دو ثابت R و c بستگی دارد.

31

اول بودن این عدد را میتوانید بصورت احتمالی در این سایت امتحان کنید.

139800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000050000055000005000005500005500000500000550000050000000000000000000000000050055055055005005005005505505500500550550550550050050000000000000000000000050055055055055005005005505505500500550550550550550050000000000000000000000050055055055055055005505505505500500550550550550550055000000000000000000000050055055055055055005505505505505500550550550550550055000000000000000000000550055055055055055005505505505505500550550550550550055000000000000000000000550055055055055055005505505505505500550550550550550055000000000000000000000550055055055055055005505505505505500550550550550550055000000000000000000000555055055055055055005505505505505500550550550550550055000000000000000000000555055055055055055005505505505505500550550550550550055000000000000000000000555055055055000000000005505505500000000000550550550055000000000000000000000555055055050005555555500005500005555555500050550550055000000000000000000000555055055000555555555555500005555555555555000550550555000000000000000000000050055055005555500055555555055555550005555500550050050000000000000000000000000000000005555500000005555555500000005555500000000000000000000000000000000555555555555555555555555555555555555555555555555555555000000000000000000000555555555555555555555555555555555555555555555555555555000000000000000000000000000000000000055555555000000555555550000000000000000000000000000000000000555055055055000555555500005500000555555000550550550555000000000000000000000555055055055005555500005505505500005555500550550550555000000000000000000000555055055055000050005505505505505500050000550550550055000000000000000000000555055055055055005005505505505505550500550550550550055000000000000000000000555055055055055055505505505505505500550550550550550055000000000000000000000555055055055055055505505505505505500550550550550550055000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005555555555555555555555555555555555555555555555555555555555555500000000000005555555555555555555555555555555555555555555555555555555555555500000000000000555555555555555555555555555555555555555555555555555555555555000000000000000055555555555555555555555555555555555555555555555555555555550000000000000000055555555555555555555555555555555555555555555555555555555550000000000000000005555555555555555555555555555555555555555555555555555555500000000000000000000555555555555555555555555555555555555555555555555555555000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000055500005550055005500555555500000005550000000000000000000000000000000000000055500005555555555505550005550000005555000000000000000000000000000000000000005550000555555555000555555550000055555000000000000000000000000000000006000005550000555000000000055555550000555055500000000000000000000000000000000000005550000055500000000000000555000555005550000000000000000000000000000000000000550000055500000000000000555005550005550000000000000000000000000000000000000550000055000000000000000055000500000500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001

26

این مسئله حل نشده که به حدس توپلیتز (Toeplitz' conjecture) مشهور است برای اولین بار در سال ۱۹۱۱ توسط اوتو توپلیتز مطرح شده است. درستی این ادعا برای وقتی که منحنی مورد نظر محدب (Convex) باشد و همچنین در حالات خاص دیگری به اثبات رسیده است. همچنین ثابت شده است که هر منحنی بسته ساده از روئوس یک مثلث متساوی‌الاضلاع میگذرد.

 

توضیحات بیشتر را در صفحه ویکی‌پدیای این مسئله ببینید.

26

23

21

 

 عدد هیش برای هر شکل مسطح برابر با تعداد لایه‌هایی هست که میتوان آن شکل را دور خودش چید بطوری که صفحه را فرش کند و هیچ جای خالی باقی نگذارد.

برای مثال عدد هیش برای مربع یا شش ضلعی منتظم بی‌نهایت است ولی در تصویر این پست شکلی با عدد ۴ دیده می‌شود. 

تاکنون اشکالی با عدد هیش ۲،۳،۴ و ۵ پیدا شده‌اند ولی برای مقادیر بزرگتر از ۵ جستجو ادامه دارد. حدس زده میشود که برای هر مقدار n  شکلی با عدد هیش n وجود دارد ولی این موضوع به اثبات نرسیده است.

برای دیدن اشکال دیگر اینجا و تصاویر موجود در قسمت نظرات را ببینید و اگر مطلب مرتبطی پیدا کردید در قسمت نظرات به اشتراک بگذارید.

18

جاسازی بهینه n دایره در یک دایره، بطوری که فضای آزاد بین دایره ها کمترین باشد، یکی از مسائل رایج در ریاضیات کاربردی است. یافتن این چیدمانهای بهینه برای برخی از مقادیر n چندان هم ساده نیست. به عنوان مثال برای n=13، مساله تا سال 2003 حل نشده بود.
قطر دایره های کوچک در تصویر 1 است و قطر دایره دربرگیرنده هر گروه زیر آن نوشته شده است. مثلا میتوان 12 دایره به قطر واحد را در یک دایره به قطر 4.029 جا داد.

14

12

۱- مجموع ارقام عدد را محاسبه کنید تا عدد جدیدی بدست بیاید.

۲- عملیات قبل را تکرار کنید تا زمانی که به یک عدد یک رقمی برسید.

تعداد دفعات تکرار عملیات را مقاومت عدد در مقابل عمل جمع ارقام می‌نامند.

مثلا مقاومت عدد ۹۹ برابر۲ و مقاومت عدد ۱۰ برابر یک است.

 

جواب نهایی 131 هستش

بیشتر ببینید