همه پست‌ها

25

بدون شرح.

24

21

20

البته عبارت صفر به توان صفر در این رابطه یک فرض شده که فرضی نادرست است و با کنار گذاشتن آن فقط ۳۴۳۵ و یک دارای این خاصیت هستند. اگر موفق به اثبات این ادعا شدید راه حل خود را در قسمت نظرات به اشتراک بگذارید.

19

14

این سوال جالب و نسبتا ساده را در یک کتاب آمادگی آزمون ورودی یکی از مدارس راهنمایی خصوصی دیدم، یعنی دانش آموز کلاس ششم باید این را جواب بدهد. فکر میکنم برای دانش آموزان متوسط و حتی خوب سخت است.

13

مسئله بروکارد یافتن پاسخ‌های معادله !m*m = 1 + n در مجموعه اعداد طبیعی است. این مسئله در سال ۱۸۷۶ برای اولین بار مطرح شد. تاکنون سه جواب برای این معادله پیدا شده است و حدس زده میشود جواب دیگری وجود ندارد.

درباره این مسئله و جوابهای دیگر آن ویکی‌پدیا را ببینید.

جالب اینجاست که در این بین ۲۳۹ و ۲۳ تنها دو عددی هستند که ۹ مکعب لازم دارند و سایر اعداد با یک تا هشت مکعب کامل قابل بازسازی هستند.

همواره می‌توان با تعداد محدودی برش ساده قسمت‌های یک چندضلعی دلخواه رو طوری بازچینی کرد که چندضلعی دلخواه دیگری با مساحت برابر را بپوشاند. این قضیه صرف نظر از شکل چند ضلعی‌ها و محدب یا مقعر بودن آنها صحیح است. اثبات این ادعا چندان مشکل نیست و در سال ۱۸۰۷ برای اولین بار به انجام رسیده است. 

برای دانستن بیشتر در مورد این مسئله ویکی‌پدیا را ببینید.

 

هیلبرت ریاضی دان معروف که در زمان حیاتش فهرستی از مهمترین مسایل ریاضی حل نشده را منتشر کرد در سومین مسئله این سوال را مطرح کرد که آیا معادل این مسئله در فضای سه بعدی برای چندوجهی‌هایی با حجم برابر هم درست است یا نه. به عبارت دیگر آیا میتوان با تعداد محدودی برش مستقیم و جابجایی و چرخش قطعات یک چند وجهی را (مثلا یک هرم) به یک چند وجهی دیگر (مثلا یک مکعب) با حجم برابر تبدیل کرد. دوسال بعد و در زمان حیات هیلبرت یکی از شاگردانش نشان داد که این موضوع همواره امکان‌پذیر نیست. در ویکی‌پدیا بیشتر بخوانید.

بیشتر ببینید