همه پست‌ها

54

سلام

از اینکه همراه این کانال هستید قدردان و متشکریم.

اگر از مطالب ارسال شده در این کانال راضی هستید با باز نشر مطالب بین دوستان و گروه‌های مرتبط از این کانال حمایت کنید.

ضمنا اگر مطلب جالبی در موضوع ریاضیات تفریحی پیدا کردید به سایت درباره بفرستید تا با نام شما در کانال منتشر شود. انجام این کار بسیار ساده است و کمک بزرگی در حفظ تداوم مطالب خواهد کرد. برای نمونه پست‌های کاربرانی مثل LesterFarley و Cvv را ببینید. لطفا از ارسال پرسش‌های ریاضی و مطالب درسی خودداری کنید.

اگر هر سوال یا پیشنهادی دارید در زیر همین پست مطرح کنید.

39

39

آخرین رکورد ثبت شده در کتاب گینس برای به خاطر سپاری هفتاد هزار رقم از ارقام عدد پی در سال ۲۰۱۵ و توسط رجیور مینا (Rajveer Meena) از ولور در هند بدست آمده است. بازخوانی این ارقام با چشمان بسته و در مقابل چشم داوران گینس بیش از ۱۰ ساعت به طول کشیده است.

تصویری از این نوجوان را در بخش نظرات و مطالب بیشتر در این مورد را در اینجا ببینید.

36

36

اگر نمودار یک تابع را قیافه آن تابع بدانیم، تابع گاما بد قیافه ترین تابعی است که تا کنون دیده ام. اگر تابعی قِناس تر از تابع گاما سراغ دارید لطفا معرفی کنید.

35

اول بودن این عدد را میتوانید بصورت احتمالی در این سایت امتحان کنید.

139800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000050000055000005000005500005500000500000550000050000000000000000000000000050055055055005005005005505505500500550550550550050050000000000000000000000050055055055055005005005505505500500550550550550550050000000000000000000000050055055055055055005505505505500500550550550550550055000000000000000000000050055055055055055005505505505505500550550550550550055000000000000000000000550055055055055055005505505505505500550550550550550055000000000000000000000550055055055055055005505505505505500550550550550550055000000000000000000000550055055055055055005505505505505500550550550550550055000000000000000000000555055055055055055005505505505505500550550550550550055000000000000000000000555055055055055055005505505505505500550550550550550055000000000000000000000555055055055000000000005505505500000000000550550550055000000000000000000000555055055050005555555500005500005555555500050550550055000000000000000000000555055055000555555555555500005555555555555000550550555000000000000000000000050055055005555500055555555055555550005555500550050050000000000000000000000000000000005555500000005555555500000005555500000000000000000000000000000000555555555555555555555555555555555555555555555555555555000000000000000000000555555555555555555555555555555555555555555555555555555000000000000000000000000000000000000055555555000000555555550000000000000000000000000000000000000555055055055000555555500005500000555555000550550550555000000000000000000000555055055055005555500005505505500005555500550550550555000000000000000000000555055055055000050005505505505505500050000550550550055000000000000000000000555055055055055005005505505505505550500550550550550055000000000000000000000555055055055055055505505505505505500550550550550550055000000000000000000000555055055055055055505505505505505500550550550550550055000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005555555555555555555555555555555555555555555555555555555555555500000000000005555555555555555555555555555555555555555555555555555555555555500000000000000555555555555555555555555555555555555555555555555555555555555000000000000000055555555555555555555555555555555555555555555555555555555550000000000000000055555555555555555555555555555555555555555555555555555555550000000000000000005555555555555555555555555555555555555555555555555555555500000000000000000000555555555555555555555555555555555555555555555555555555000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000055500005550055005500555555500000005550000000000000000000000000000000000000055500005555555555505550005550000005555000000000000000000000000000000000000005550000555555555000555555550000055555000000000000000000000000000000006000005550000555000000000055555550000555055500000000000000000000000000000000000005550000055500000000000000555000555005550000000000000000000000000000000000000550000055500000000000000555005550005550000000000000000000000000000000000000550000055000000000000000055000500000500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001

34

چندی پیش خبر تهیه اولین تصویر سیاهچاله در کانالهای خبری و شبکه های اجتماعی پیچید.‌ این تصویر در واقع صحنه ۵۵ میلیون سال پیش است، چون آنقدر از ما دور است که ۵۵ میلیون سال طول کشیده است تا نور آن به ما برسد. ضمنا تصویر را از نور مرئی بدست نیاورده اند بلکه آن را از امواج رادیویی که از سیاهچاله رسیده است و با روش محاسباتی خاصی نتیجه گرفته اند. با اندکی ریاضیات میشود نشان داد که تصویر دو بعدی منبع امواج برابر است با تبدیل فوریه الگوی تداخل آن بر روی زمین.
خود سیاهچاله را نمیشود دید ولی با دریافت امواج الکترومغناطیسی اطراف آن می‌شود سیاهی اش را تشخیص داد.  نزدیک ترین سیاهچاله  مناسب برای رویت همین سیاهچاله M87 است که ۵۵ میلیون سال نوری از ما دور است. از خورشید ۲۷,۰۰۰ بار بزرگتر و میلیاردها بار سنگینتر است. قطر ظاهری آن در آسمانِ زمین به اندازه ای کوچک است که مثلا بخواهیم از روی قله دماوند تار مویی را در ساحل خلیج فارس در شهر بوشهر تشخیص دهیم. زاویه رویت این سیاهچاله نزدیک به یک «صد میلیونم» درجه است. قویترین تلسکوپ های نوری قدرت تشخیص چنین زاویه کوچکی را ندارند؛ به عنوان مثال قدرت تشخیص تلسکوپ Hubble  یک «صد هزارم» درجه است. برای تشخیص M87 از روش تداخل امواج استفاده شده است که در آن لازم است از نقاط مختلف روی زمین تصویر رادیویی ثبت شود. هرچه فاصله نقاط بیشتر باشد اجسام دورتری را میتوان تشخیص داد، و هر چه تعداد نقاط بیشتر باشد کیفت تصویر بهتر است. تعداد ۸ تلسکوپ رادیویی در چند نقطه کره زمین نصب کرده اند که با چرخش کره زمین موقعیتشان نسبت به سیاه چاله تغییر کرده و تصاویر مستقل ثبت میکنند. هر تلسکوپ خود از ده ها و گاهی صدها آنتن تشکیل شده است. به مدت 8 ساعت تصاویر فراوانی از M87 تهیه کرده و سپس داده ها را با هواپیما به یک آزمایشگاه مرکزی حمل کردند. به علت حجم بسیار بالای داده ها، هواپیما بسیار زودتر از اینترنت آنها را به مقصد میرساند.

در آزمایشگاه مرکزی با کمک یک کامپیوتر پرقدرت، تصاویر ثبت شده از ایستگاه های مختلف را همزمان کرده و سپس الگوی تداخل آنها را بدست آوردند. سپس با محاسبه تبدیل فوریه دو بعدی الگو ی تداخل، این شکل نه چندان واضح را بدست آوردند. با افزایش تعداد نقاط تصویر برداری و افزایش فاصله آنها میتوان تصویر واضح تری بدست آورد.

34

این مسئله حل نشده که به حدس توپلیتز (Toeplitz' conjecture) مشهور است برای اولین بار در سال ۱۹۱۱ توسط اوتو توپلیتز مطرح شده است. درستی این ادعا برای وقتی که منحنی مورد نظر محدب (Convex) باشد و همچنین در حالات خاص دیگری به اثبات رسیده است. همچنین ثابت شده است که هر منحنی بسته ساده از روئوس یک مثلث متساوی‌الاضلاع میگذرد.

 

توضیحات بیشتر را در صفحه ویکی‌پدیای این مسئله ببینید.

34

33

این نقاشی افسون کننده کار یک هنرمند نیست بلکه کار یک تابع مختلط است. این تابع برای هر نقطه از صفحه مختلط، یک سری اعداد طبیعی تولید میکند.با رنگ کردن هر نقطه بر اساس مقدار عدد آن، چنین تصویری بوجود می آید.
تابع مولد این مجموعه بسیار ساده است. برای عدد مختط z تابع f(z)=z*z+c را تعریف میکنیم که در آن c عددی ثابت است. آنگاه با شروع از نقطه اولیه z0  ، مجموعه ای از اعداد مختلف را اینگونه تولید میکنیم:

 

z1=f(z0)

 

z2=f(z1)

 

zk=f(zk-1)
...

zN=f(zN-1)

بعد از تولید هر نقطه، قدر مطلق آن را با ثابت R مقایسه میکنیم. اگر قدر مطلق zk از ثابت R بزرگتر و k کمتر از N  باشد، به اصلاح میگویند نقطه گریخته است و در این صورت عدد k را به آن نقطه انتصاب میدهیم. اگر نقطه نگریزد عدد N را به آن نسبت میدهیم.
نقاط تاریک تصویر گریخته ها هستند. این مجموعه اعداد به N و دو ثابت R و c بستگی دارد.

30

30

29

29

فرما یکی از ریاضی دانانی است که عادت نداشته اثبات ادعاهای خودش را بنویسد. البته در موارد متعددی مانند معادله معروفش که تا ۳۰۰ سال ریاضی‌دانان را به خود مشغول کرده بود ادعا کرده که ادعای خودش را به اثبات رسانده ولی حال و حوصله یا جای کافی روی حاشیه کتاب برای نوشتن راه حل خود ندارد.صحت ادعای فرما در مورد معادله معروفش X^n+Y^n=Z^n نهایتا در سال ۲۰۰۶ توسط اندرو وایلز و پس از یک عمر تحقیق و در بیش از ۱۰۰ صفحه به اثبات رسید.

یک ادعای دیگر فرما که سالها بدون اثبات ماند بیان میکند که هر عدد اول فرد را میتوان به صورت مجموع دو مربع کامل نوشت اگر و فقط اگر باقی مانده تقسیم آن بر ۴ برابر با یک باشد. برای مثال 41=4^2+5^2. امتحان کردن این ادعا برای اعداد اول کوچک بسیار آسان است.

با وجود تلاش ریاضی دانان اثبات این ادعا برای ۱۰۰ سال بی نتیجه ماند تا اینکه اویلر اثبات نسبتا پیچیده‌ای برای این ادعا در سال ۱۷۲۵ منتشر کرد. بعدا ریاضیدانهای دیگر اثباتهای جدیدی برای این قضیه ارائه کردند. لاگرانژ، گاوس و چندین ریاضی دان دیگر از این جمله اند ولی همه اثبات‌های ارائه شده پیچیده و طولانی هستند.

در نهایت زگیر (Zagier) ریاضی دان آمریکایی در سال ۱۹۹۰ موفق شد اثبات بسیار ساده و کوتاهی که به اثبات یک جمله‌ای مشهور است برای این قضیه ارائه کند. در این صفحه ویکی پدیا بعضی از این اثبات‌ها از جمله اثبات یک جمله‌ای را ببینید. البته اثبات یک جمله‌ای برای ریاضی دوستان ممکن است به چند جمله توضیح اضافه احتیاج داشته باشد.

28

27

بدون شرح.

27

27

27

26

اگر موفق به اثبات این قضیه شدید راه حل را در قسمت نظرات به اشتراک بگذارید.

26

26

26

25

25

بیشتر ببینید