همه پست‌ها

جالب اینجاست که در این بین ۲۳۹ و ۲۳ تنها دو عددی هستند که ۹ مکعب لازم دارند و سایر اعداد با یک تا هشت مکعب کامل قابل بازسازی هستند.

همواره می‌توان با تعداد محدودی برش ساده قسمت‌های یک چندضلعی دلخواه رو طوری بازچینی کرد که چندضلعی دلخواه دیگری با مساحت برابر را بپوشاند. این قضیه صرف نظر از شکل چند ضلعی‌ها و محدب یا مقعر بودن آنها صحیح است. اثبات این ادعا چندان مشکل نیست و در سال ۱۸۰۷ برای اولین بار به انجام رسیده است. 

برای دانستن بیشتر در مورد این مسئله ویکی‌پدیا را ببینید.

 

هیلبرت ریاضی دان معروف که در زمان حیاتش فهرستی از مهمترین مسایل ریاضی حل نشده را منتشر کرد در سومین مسئله این سوال را مطرح کرد که آیا معادل این مسئله در فضای سه بعدی برای چندوجهی‌هایی با حجم برابر هم درست است یا نه. به عبارت دیگر آیا میتوان با تعداد محدودی برش مستقیم و جابجایی و چرخش قطعات یک چند وجهی را (مثلا یک هرم) به یک چند وجهی دیگر (مثلا یک مکعب) با حجم برابر تبدیل کرد. دوسال بعد و در زمان حیات هیلبرت یکی از شاگردانش نشان داد که این موضوع همواره امکان‌پذیر نیست. در ویکی‌پدیا بیشتر بخوانید.

بیشتر ببینید