54

اگر موفق به اثبات این قضیه شدید راه حل را در قسمت نظرات به اشتراک بگذارید.

28

24

همین الان با استفاده از یکی از ابزارهای آنلاین سعی کنید بزرگترین مقسوم علیه مشترک دو عدد n^17+9 و (n+1)^17+9 را به ازای مقادیر مختلف n محاسبه کنید. خواهید دید که این مقدار برابر یک خواهد بود. در حقیقت اگر با شروع از یک مقادیر n را با سرعت هزاران مقدار در ثانیه در رابطه بگذارید تا پایان عمر جهان نتیجه یک خواهد بود. 

با این وجود این الگو برای همه مقادیر n درست نیست و در حقیقت اولین باری که مقسوم علیه مشترک این دو عدد غیر از یک خواهد بود به ازای مقدار زیر برای n میباشد:

8424432925592889329288197322308900672459420460792433

 

نتیجه اخلاقی:‌ هیچ ادعایی در ریاضیات بدون اثبات قابل پذیرش نیست حتی اگر برای میلیون‌ها مقدار درست باشد!

22

21

اگر موفق به یافتن نمونه‌های دیگری از این الگو شدید یا توانستید ادعای این پست را اثبات کنید مطلب را در قسمت نظرات به اشتراک بگذارید

19

17

روش‌های دیگری را که برای اثبات واگرایی این مجموع سراغ دارید در قسمت نظرات به اشتراک بگذارید.

16

14

در ریاضیات، آجر اویلر یا مکعب اویلر که به‌نام لئونارد اویلر نامگذاری شده است، مکعبی است که لبه‌ها و تمامی قطر‌های آن اعدادی طبیعی هستند. آجر اصلی اویلر نیز به مکعبی گفته می‌شود که طول‌های آن نسبت به هم اول باشند. 

ابعاد یک آجر اویلر را می‌توان مطابق با پاسخ معادله سیاله زیر در نظر گرفت.

{\begin{cases}a^{2}+b^{2}=d^{2}\\a^{2}+c^{2}=e^{2}\\b^{2}+c^{2}=f^{2}\end{cases}}

در رابطه فوق a,b,c برابر با طول لبه‌ها بوده و d,e,f نشان‌دهنده قطر‌ها هستند. این مکعب‌ها ویژگی‌هایی خاص داشته از این رو از آن در علوم و مهندسی استفاده می‌شود.

کوچک‌ترین آجر اویلر در سال ۱۷۱۹ توسط «پاول هالک» (Paul Halcke) بدست آمد. لبه‌های این آجر برابر است با:

(d,e,f ) = (125, 244, 267)

در ادامه برخی دیگر از مهم‌ترین ابعاد یافته شده به عنوان آجر اویلر نیز ارائه شده‌اند.

(85,132,720) — (157,725,732)

(140,480,693) — (500,707,843)

(160,231,792) — (281,808,825)

(187,1020,1584) — (1037,1595,1884)

(195,748,6336) — (773,6339,6380)

(240,252,275) — (348,365,373)

(429,880,2340) — (979,2379,2500)

(495,4888,8160) — (4913,8175,9512)

(528,5796,6325) — (5820,6347,8579)

آجر کامل

یک آجر کامل، مکعبی اویلری محسوب می‌شود که قطر فضایی آن نیز عددی صحیح است. به عبارتی دیگر معادله زیر نیز باید بین ابعاد اصلی (یا همان لبه‌ها) برقرار باشد. قطر فضایی، قطری است که دو گوشه مخالف مکعب را به هم وصل می‌کند.

{\displaystyle a^{2}+b^{2}+c^{2}=g^{2},}

در رابطه فوق g نشان‌دهنده قطر فضایی است. تاکنون کسی مکعبی کامل را پیدا نکرده و هیچکس نیز هنوز وجود نداشتن مکعب کامل را اثبات نکرده است.

آجر اصلی کامل یا آجر اولیه کامل نیز به مکعبی گفته می‌شود که هم لبه‌ها و قطر‌های وجوه آن، اعدادی صحیح بوده و همزمان نسبت به هم اعدادی اول باشند.

آجر تقریبا کامل

یک مکعب تقریبا کامل، از 7 طول، دارای 6 طول صحیح است. چنین مکعب‌هایی را می‌توان در سه دسته حجمی، طولی یا سطحی تقسیم‌بندی کرد. در مورد مکعب حجمی، طول قطر فضایی عددی گنگ است. در مکعب طولی نیز یکی از لبه‌های a،b،c عددی گنگ خواهد بود.

نویسنده:سجاد اسدی

 

 

الگوی معروف 1و1و2و3و5و8و13و... را همه می شناسیم و به آن الگوی فیپوناچی می گویند و به صورت زیر تعریف می شود:

f(n)=f(n-1)+f(n-2)      f(1)=1     f(2)=1

حالا من داداش کوچیکه ی فیپوناچی را به شما معرفی می کنم:

g(n)=g(n-1)+g(n-2)     g(1)=g(2)=0

جمله های ابتدایی این الگو به صورت 0و0و1و2و4و7و12و... است و به راحتی

می توان نشان داد  که همواره:

g(n)=f(n)-1

بیشتر ببینید